8 research outputs found

    Electronic and paper versions of a faces pain intensity scale: concordance and preference in hospitalized children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of pain in children is an important aspect of pain management and can be performed by observational methods or by self-assessment. The Faces Pain Scale-Revised (FPS-R) is a self-report tool which has strong positive correlations with other well established self-report pain intensity measures. It has been recommended for measuring pain intensity in school-aged children (4 years and older). The objective of this study is to compare the concordance and the preference for two versions, electronic and paper, of the FPS-R, and to determine whether an electronic version of the FPS-R can be used by children aged 4 and older.</p> <p>Methods</p> <p>The study is an observational, multicenter, randomized, cross-over, controlled, open trial. Medical and surgical patients in two pediatric hospitals (N = 202, age 4-12 years, mean age 8.3 years, 58% male) provided self-reports of their present pain using the FPS-R on a personal digital assistant (PDA) and on a paper version. Paper and electronic versions of the FPS-R were administered by a nurse in a randomized order: half the patients were given the PDA version first and the other half the paper version first. The time between the administrations was planned to be less than 30 minutes but not simultaneous. Two hundred and thirty-seven patients were enrolled; 35 were excluded from analysis because of misunderstanding of instructions or abnormal time between the two assessments.</p> <p>Results</p> <p>Final population for analysis comprised 202 children. The overall weighted Kappa was 0.846 (95%CI: 0.795; 0.896) and the Spearman correlation between scores on the two versions was r<sub>s </sub>= 0.911 (p < 0.0001). The mean difference of pain scores was less than 0.1 out of 10, which was neither statistically nor clinically significant; 83.2% of children chose the same face on both versions of the FPS-R. Preference was not modified by order, sex, age, hospitalization unit (medical or surgical units), or previous analgesics. The PDA was preferred by 87.4% of the children who expressed a preference.</p> <p>Conclusion</p> <p>The electronic version of the FPS-R can be recommended for use with children aged 4 to 12, either in clinical trials or in hospitals to monitor pain intensity.</p

    Treatment of Rat Spinal Cord Injury with the Neurotrophic Factor Albumin-Oleic Acid: Translational Application for Paralysis, Spasticity and Pain

    Get PDF
    Sensorimotor dysfunction following incomplete spinal cord injury (iSCI) is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb) and Oleic Acid (OA) may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i) Saline, ii) Alb (0.4 nanomoles), iii) OA (80 nanomoles), iv) Alb-Elaidic acid (0.4/80 nanomoles), or v) Alb-OA (0.4/80 nanomoles) were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA) reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50±10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47±5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4–L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2±1.1 and 2.3±0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel neurotrophic factor for the treatment of paralysis, spasticity and pain
    corecore